Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1351777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576622

RESUMO

Introduction: Streptococcus pyogenes is a Gram-positive pathogen that causes a significant global burden of skin pyoderma and pharyngitis. In some cases, infection can lead to severe invasive streptococcal diseases. Previous studies have shown that IL-17 deficiency in mice (IL-17-/-) can reduce S. pyogenes clearance from the mucosal surfaces. However, the effect of IL-17 on the development of severe invasive streptococcal disease has not yet been assessed. Methods: Here, we modeled single or repeated non-lethal intranasal (IN) S. pyogenes M1 strain infections in immunocompetent and IL-17-/- mice to assess bacterial colonization following a final IN or skin challenge. Results: Immunocompetent mice that received a single S. pyogenes infection showed long-lasting immunity to subsequent IN infection, and no bacteria were detected in the lymph nodes or spleens. However, in the absence of IL-17, a single IN infection resulted in dissemination of S. pyogenes to the lymphoid organs, which was accentuated by repeated IN infections. In contrast to what was observed in the respiratory mucosa, skin immunity did not correlate with the systemic levels of IL-17. Instead, it was found to be associated with the activation of germinal center responses and accumulation of neutrophils in the spleen. Discussion: Our results demonstrated that IL-17 plays a critical role in preventing invasive disease following S. pyogenes infection of the respiratory tract.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Animais , Camundongos , Interleucina-17 , Monitorização Imunológica , Mucosa Respiratória
2.
Nat Commun ; 14(1): 5963, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749129

RESUMO

Mucosally active subunit vaccines are an unmet clinical need due to lack of licensed immunostimulants suitable for vaccine antigens. Here, we show that intranasal administration of liposomes incorporating: the Streptococcus pyogenes peptide antigen, J8; diphtheria toxoid as a source of T cell help; and the immunostimulatory glycolipid, 3D(6-acyl) PHAD (PHAD), is able to induce long-lived humoral and cellular immunity. Mice genetically deficient in either mucosal antibodies or total antibodies are protected against S. pyogenes respiratory tract infection. Utilizing IL-17-deficient mice or depleting cellular subsets using antibodies, shows that the cellular responses encompassing, CD4+ T cells, IL-17, macrophages and neutrophils have important functions in vaccine-mediated mucosal immunity. Overall, these data demonstrate the utility of a mucosal vaccine platform to deliver multi-pronged protective responses against a highly virulent pathogen.


Assuntos
Lipossomos , Streptococcus pyogenes , Camundongos , Animais , Neutrófilos , Interleucina-17 , Antígenos de Bactérias , Macrófagos , Administração Intranasal , Imunidade nas Mucosas , Vacinas de Subunidades , Camundongos Endogâmicos BALB C
3.
NPJ Vaccines ; 8(1): 102, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452052

RESUMO

Group A Streptococcus (Strep A) is a life-threatening human pathogen with no licensed vaccine. Here, we used a biopolymer particle (BP) approach to display repeats of Strep A vaccine candidate peptides p*17 and K4S2 derived from M and non-M protein, respectively. BPs densely displaying both peptides (BP-p*17-S2) were successfully assembled in one-step inside an engineered endotoxin-free Escherichia coli strain. Purified BP-p*17-S2 showed a spherical core-shell morphology with a biopolymer core and peptide shell. Upon formulation with aluminum hydroxide as adjuvant, BP-p*17-S2 exhibited a mean diameter of 2.9 µm and a positive surface charge of 22 mV. No cytotoxicity was detected when tested against HEK-293 cells. Stability studies showed that BP-p*17-S2 is ambient-temperature stable. Immunized mice showed no adverse reactions, while producing high titers of peptide specific antibodies and cytokines. This immune response could be correlated with protective immunity in an animal model of infection, i.e. intranasal challenge of mice with Strep A, where a significant reduction of >100-fold of pathogen burden in nose-associated lymphoid tissue, lung, and spleen was obtained. The cost-effective scalable manufacture of ambient-temperature stable BPs coated with Strep A peptides combined with their immunogenic properties offer an attractive alternative strategy to current Strep A vaccine development.

4.
mBio ; 14(1): e0348822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744883

RESUMO

Mutation within the Streptococcus pyogenes (Streptococcus group A; Strep A) covR/S regulatory system has been associated with a hypervirulent phenotype resulting from the upregulation of several virulence factors, including the pore-forming toxin, streptolysin O (SLO). In this study, we utilized a range of covR/S mutants, including M1T1 clonal strains (5448 and a covS mutant generated through mouse passage designated 5448AP), to investigate the contribution of SLO to the pathogenesis of covR/S mutant Strep A disease. Up-regulation of slo in 5448AP resulted in increased SLO-mediated hemolysis, decreased dendritic cell (DC) viability post coculture with Strep A, and increased production of tumor necrosis factor (TNF) and monocyte chemoattractant protein 1 (MCP-1) by DCs. Mouse passage of an isogenic 5448 slo-deletion mutant resulted in recovery of several covR/S mutants within the 5448Δslo background. Passage also introduced mutations in non-covR/S genes, but these were considered to have no impact on virulence. Although slo-deficient mutants exhibited the characteristic covR/S-controlled virulence factor upregulation, these mutants caused increased DC viability with reduced inflammatory cytokine production by infected DCs. In vivo, slo expression correlated with decreased DC numbers in infected murine skin and significant bacteremia by 3 days postinfection, with severe pathology at the infection site. Conversely, the absence of slo in the infecting strain (covR/S mutant or wild-type) resulted in detection of DCs in the skin and attenuated virulence in a murine model of pyoderma. slo-sufficient and -deficient covR/S mutants were susceptible to immune clearance mediated by a combination vaccine consisting of a conserved M protein peptide and a peptide from the CXC chemokine protease SpyCEP. IMPORTANCE Streptococcus pyogenes is responsible for significant numbers of invasive and noninvasive infections which cause significant morbidity and mortality globally. Strep A isolates with mutations in the covR/S system display greater propensity to cause severe invasive diseases, which are responsible for more than 163,000 deaths each year. This is due to the upregulation of virulence factors, including the pore-forming toxin streptolysin O. Utilizing covR/S and slo-knockout mutants, we investigated the role of SLO in virulence. We found that SLO alters interactions with host cell populations and increases Strep A viability at sterile sites of the host, such as the blood, and that its absence results in significantly less virulence. This work underscores the importance of SLO in Strep A virulence while highlighting the complex nature of Strep A pathogenesis. This improved insight into host-pathogen interactions will enable a better understanding of host immune evasion mechanisms and inform streptococcal vaccine development programs.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Animais , Camundongos , Virulência/genética , Estreptolisinas/genética , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Fatores de Virulência/metabolismo
5.
Small ; 19(8): e2205819, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564365

RESUMO

Immunogenic carrier proteins such as the non-toxic diphtheria toxin variant, cross-reacting material 197 (CRM197), are widely used in subunit vaccine formulations to boost immunogenicity of chemically conjugated antigens. Conjugate vaccines are inherently expensive due to laborious manufacturing steps. Here, this work develops a particulate vaccine platform based on using engineered Escherichia coli to assemble CRM197-antigen fusion proteins into discrete submicron-sized particles. This approach enables precise loading of diverse antigens and epitopes enhancing their immunogenicity. A cost-effective, high-yield, and scalable biomanufacturing process is developed. Purified particulate CRM197-antigen vaccines are ambient-temperature stable. CRM197 particles incorporating pathogen-specific antigens or epitopes from SARS-CoV-2, Streptococcus pyogenes (group A), and Mycobacterium tuberculosis induced cell-mediated and humoral immune responses mediating protective immunity in respective animal models of infection. The CRM197 particle vaccine platform is versatile, enabling co-delivery of selected antigens/epitopes together with immunogenic CRM197 as discrete stable particles avoiding laborious manufacture of soluble CRM197 and antigen followed by chemical conjugation.


Assuntos
COVID-19 , Animais , SARS-CoV-2 , Proteínas de Bactérias/química , Vacinas Sintéticas , Vacinas Conjugadas , Antígenos , Epitopos
6.
Microbiol Spectr ; 10(3): e0091622, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35536022

RESUMO

Streptococcus pneumoniae is the most common cause of bacterial illness worldwide. Current vaccines based on the polysaccharide capsule are only effective against a limited number of the >100 capsular serotypes. A universal vaccine based on conserved protein antigens requires a thorough understanding of gene expression in S. pneumoniae. All S. pneumoniae strains encode the SpnIII Restriction-Modification system. This system contains a phase-variable methyltransferase that switches specificity, and controls expression of multiple genes-a phasevarion. We examined the role of this phasevarion during pneumococcal pathobiology, and determined if phase variation resulted in differences in expression of currently investigated conserved protein antigens. Using locked strains that express a single methyltransferase specificity, we found differences in clinically relevant traits, including survival in blood, and adherence to and invasion of human cells. We also observed differences in expression of numerous proteinaceous vaccine candidates, which complicates selection of antigens for inclusion in a universal protein-based pneumococcal vaccine. This study will inform vaccine design against S. pneumoniae by ensuring only stably expressed candidates are included in a rationally designed vaccine. IMPORTANCE S. pneumoniae is the world's foremost bacterial pathogen. S. pneumoniae encodes a phasevarion (phase-variable regulon), that results in differential expression of multiple genes. Previous work demonstrated that the pneumococcal SpnIII phasevarion switches between six different expression states, generating six unique phenotypic variants in a pneumococcal population. Here, we show that this phasevarion generates multiple phenotypic differences relevant to pathobiology. Importantly, expression of conserved protein antigens varies with phasevarion switching. As capsule expression, a major pneumococcal virulence factor, is also controlled by the phasevarion, our work will inform the selection of the best candidates to include in a rationally designed, universal pneumococcal vaccine.


Assuntos
Variação de Fase , Streptococcus pneumoniae , Humanos , Metiltransferases/genética , Vacinas Pneumocócicas/genética , Virulência
7.
Adv Healthc Mater ; 11(3): e2102089, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716678

RESUMO

There is an unmet need for safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines that are stable and can be cost-effectively produced at large scale. Here, a biopolymer particle (BP) vaccine technology that can be quickly adapted to new and emerging variants of SARS-CoV-2 is used. Coronavirus antigen-coated BPs are described as vaccines against SARS-CoV-2. The spike protein subunit S1 or epitopes from S and M proteins (SM) plus/minus the nucleocapsid protein (N) are selected as antigens to either coat BPs during assembly inside engineered Escherichia coli or BPs are engineered to specifically ligate glycosylated spike protein (S1-ICC) produced by using baculovirus expression in insect cell culture (ICC). BP vaccines are safe and immunogenic in mice. BP vaccines, SM-BP-N and S1-ICC-BP induced protective immunity in the hamster SARS-CoV-2 infection model as shown by reduction of virus titers up to viral clearance in lungs post infection. The BP platform offers the possibility for rapid design and cost-effective large-scale manufacture of ambient temperature stable and globally available vaccines to combat the coronavirus disease 2019 (COVID-19) pandemic.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Antivirais , Cricetinae , Humanos , Camundongos , Polímeros , SARS-CoV-2 , Temperatura
8.
Clin Transl Immunology ; 10(9): e1337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527244

RESUMO

OBJECTIVES: The upper respiratory tract is the major entry site for Streptococcus pyogenes and influenza virus. Vaccine strategies that activate mucosal immunity could significantly reduce morbidity and mortality because of these pathogens. The severity of influenza is significantly greater if a streptococcal infection occurs during the viraemic period and generally viral infections complicated by a subsequent bacterial infection are known as super-infections. We describe an innovative vaccine strategy against influenza virus:S. pyogenes super-infection. Moreover, we provide the first description of a liposomal multi-pathogen-based platform that enables the incorporation of both viral and bacterial antigens into a vaccine and constitutes a transformative development. METHODS: Specifically, we have explored a vaccination strategy with biocompatible liposomes that express conserved streptococcal and influenza A virus B-cell epitopes on their surface and contain encapsulated diphtheria toxoid as a source of T-cell help. The vaccine is adjuvanted by inclusion of the synthetic analogue of monophosphoryl lipid A, 3D-PHAD. RESULTS: We observe that this vaccine construct induces an Immunoglobulin A (IgA) response in both mice and ferrets. Vaccination reduces viral load in ferrets from influenza challenge and protects mice from both pathogens. Notably, vaccination significantly reduces both mortality and morbidity associated with a super-infection. CONCLUSION: The vaccine design is modular and could be adapted to include B-cell epitopes from other mucosal pathogens where an IgA response is required for protection.

9.
Clin Transl Immunology ; 10(3): e1260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732459

RESUMO

OBJECTIVES: A major COVID-19 vaccine strategy is to induce antibodies that prevent interaction between the Spike protein's receptor-binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2). These vaccines will also induce T-cell responses. However, concerns were raised that aberrant vaccine-induced immune responses may exacerbate disease. We aimed to identify minimal epitopes on the RBD that would induce antibody responses that block the interaction of the RBD and ACE2 as a strategy leading to an effective vaccine with reduced risk of inducing immunopathology. METHODS: We procured a series of overlapping 20-amino acid peptides spanning the RBD and asked which were recognised by plasma from COVID-19 convalescent patients. Identified epitopes were conjugated to diphtheria-toxoid and used to vaccinate mice. Immune sera were tested for binding to the RBD and for their ability to block the interaction of the RBD and ACE2. RESULTS: Seven putative vaccine epitopes were identified. Memory B-cells (MBCs) specific for one of the epitopes were identified in the blood of convalescent patients. When used to vaccinate mice, six induced antibodies that bound recRBD and three induced antibodies that could partially block the interaction of the RBD and ACE2. However, when the sera were combined in pairs, we observed significantly enhanced inhibition of binding of RBD to ACE2. Two of the peptides were located in the main regions of the RBD known to contact ACE2. Of significant importance to vaccine development, two of the peptides were in regions that are invariant in the UK and South African strains. CONCLUSION: COVID-19 convalescent patients have SARS-CoV-2-specific antibodies and MBCs, the specificities of which can be defined with short peptides. Epitope-specific antibodies synergistically block RBD-ACE2 interaction.

10.
mBio ; 12(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622722

RESUMO

Infections with Streptococcus pyogenes and their sequelae are responsible for an estimated 18 million cases of serious disease with >700 million new primary cases and 500,000 deaths per year. Despite the burden of disease, there is currently no vaccine available for this organism. Here, we define a combination vaccine P*17/K4S2 comprising of 20-mer B-cell peptide epitopes, p*17 (a mutant derived from the highly conserved C3-repeat region of the M-protein), and K4S2 (derived from the streptococcal anti-neutrophil factor, Spy-CEP). The peptides are chemically conjugated to either diphtheria toxoid (DT) or a nontoxic mutant form of diphtheria toxin, CRM197. We demonstrate that a prime-pull immunization regimen involving two intramuscular inoculations with P*17/K4S2 adjuvanted with a two-component liposomal adjuvant system (CAF01; developed by Statens Serum Institut [SSI], Denmark), followed by an intranasal inoculation of unadjuvanted vaccine (in Tris) induces peptide- and S. pyogenes-binding antibodies and protects from mucosal and skin infection with hypervirulent covR/S mutant organisms. Prior vaccination with DT does not diminish the response to the conjugate peptide vaccines. Detailed Good Laboratory Practice (GLP) toxicological evaluation in male and female rats did not reveal any gross or histopathological adverse effects.IMPORTANCE A vaccine to control S. pyogenes infection is desperately warranted. S. pyogenes colonizes the upper respiratory tract (URT) and skin, from where it can progress to invasive and immune-mediated diseases. Global mortality estimates for S. pyogenes-associated diseases exceeds 500,000 deaths per year. S. pyogenes utilizes antigenic variation as a defense mechanism to circumvent host immune responses and thus a successful vaccine needs to provide strain-transcending and multicompartment (mucosal and skin) immunity. By defining highly conserved and protective epitopes from two critical virulence factors (M-protein and Spy-CEP) and combining them with a potent immunostimulant, CAF®01, we are addressing an unmet clinical need for a mucosally and skin-active subunit vaccine. We demonstrate that prime-pull immunization (2× intramuscular injections followed by intranasal immunization) promotes high sustained antibody levels in the airway mucosa and serum and protects against URT and invasive disease.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Epitopos de Linfócito B/imunologia , Imunidade nas Mucosas , Imunização/métodos , Lipossomos/química , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Proteínas da Membrana Bacteriana Externa/genética , Epitopos de Linfócito B/genética , Feminino , Lipossomos/administração & dosagem , Masculino , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/administração & dosagem , Streptococcus pyogenes/genética , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/imunologia
11.
Sci Rep ; 11(1): 127, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420258

RESUMO

We have developed two candidate vaccines to protect against multiple strains of Strep A infections. The candidates are combinatorial synthetic peptide vaccines composed of a M protein epitope (J8 or p*17) and a non-M protein epitope (K4S2). To enhance immunogenicity, each peptide is conjugated to the carrier protein CRM197 (CRM) and formulated with aluminium hydroxide adjuvant Alhydrogel (Alum) to make the final vaccines, J8-CRM + K4S2-CRM/Alum and p*17-CRM + K4S2-CRM/Alum. The safety and toxicity of each vaccine was assessed. Sprague Dawley rats were administered three intramuscular doses, over a six-week study with a 4-week recovery period. A control group received CRM only formulated with Alum (CRM/Alum). There was no evidence of systemic toxicity in the rats administered either vaccine. There was an associated increase in white blood cell, lymphocyte and monocyte counts, increased adrenal gland weights, adrenocortical hypertrophy, and increased severity of granulomatous inflammation at the sites of injection and the associated inguinal lymph nodes. These changes were considered non-adverse. All rats administered vaccine developed a robust and sustained immunological response. The absence of clinical toxicity and the development of an immunological response in the rats suggests that the vaccines are safe for use in a phase 1 clinical trial in healthy humans.


Assuntos
Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Vacinas de Subunidades/imunologia , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Imunogenicidade da Vacina , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Vacinas Estreptocócicas/administração & dosagem , Vacinas Estreptocócicas/efeitos adversos , Streptococcus pyogenes/genética , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/efeitos adversos
12.
Sci Adv ; 6(5): eaax2285, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32064333

RESUMO

To be optimally effective, peptide-based vaccines need to be administered with adjuvants. Many currently available adjuvants are toxic, not biodegradable; they invariably invoke adverse reactions, including allergic responses and excessive inflammation. A nontoxic, biodegradable, biocompatible, self-adjuvanting vaccine delivery system is urgently needed. Herein, we report a potent vaccine delivery system fulfilling the above requirements. A peptide antigen was coupled with poly-hydrophobic amino acid sequences serving as self-adjuvanting moieties using solid-phase synthesis, to produce fully defined single molecular entities. Under aqueous conditions, these molecules self-assembled into distinct nanoparticles and chain-like aggregates. Following subcutaneous immunization in mice, these particles successfully induced opsonic epitope-specific antibodies without the need of external adjuvant. Mice immunized with entities bearing 15 leucine residues were able to clear bacterial load from target organs without triggering the release of soluble inflammatory mediators. Thus, we have developed a well-defined and effective self-adjuvanting delivery system for peptide antigens.


Assuntos
Sistemas de Liberação de Medicamentos , Inflamação/prevenção & controle , Vacinas de Subunidades/farmacologia , Vacinas/farmacologia , Adjuvantes Imunológicos/farmacologia , Aminoácidos/química , Aminoácidos/imunologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Epitopos/efeitos dos fármacos , Epitopos/imunologia , Humanos , Imunidade nas Mucosas/imunologia , Inflamação/imunologia , Camundongos , Nanopartículas/química , Vacinas/química , Vacinas/imunologia , Vacinas de Subunidades/química , Vacinas de Subunidades/imunologia
13.
Vaccine ; 38(2): 309-317, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31668366

RESUMO

Moraxella catarrhalis and nontypeable Haemophilus influenzae are important bacterial causes of otitis media in children and respiratory diseases in adults. Lipooligosaccharide (LOS) from M. catarrhalis and outer membrane protein 26 (OMP26) from NTHi are major surface antigens identified as potential vaccine components against these organisms. We previously constructed M. catarrhalis in which LOS is truncated, but contains a structure common to the three known serotypes of M. catarrhalis. OMP26 is known to enhance clearance of NTHi following vaccination in animal models, so was chosen as the carrier protein. In this study, we conjugated wild-type and truncated M. catarrhalis detoxified-LOS to a recombinant modified OMP26, rOMP26VTAL. Vaccination of mice with these conjugates resulted in a significant increase in anti-LOS and anti-rOMP26VTAL IgG levels. Importantly, mouse antisera showed complement-mediated bactericidal activity against all M. catarrhalis serotype A and B strains and a NTHi strain tested. Serotypes A & B make up more than 90% of isolates. These data suggest that the LOS and OMP based conjugate can be used as vaccine components and require further investigation in animal models.


Assuntos
Vacinas Bacterianas/imunologia , Vacinas Anti-Haemophilus/imunologia , Haemophilus influenzae/imunologia , Moraxella catarrhalis/imunologia , Animais , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/administração & dosagem , Feminino , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/prevenção & controle , Vacinas Anti-Haemophilus/administração & dosagem , Imunoglobulina G/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Moraxellaceae/imunologia , Infecções por Moraxellaceae/prevenção & controle , Vacinação , Vacinas Conjugadas/imunologia
14.
Sci Adv ; 5(9): eaax3013, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31517054

RESUMO

Invasive streptococcal disease (ISD) and toxic shock syndrome (STSS) result in over 160,000 deaths each year. We modelled these in HLA-transgenic mice infected with a clinically lethal isolate expressing Streptococcal pyrogenic exotoxin (Spe) C and demonstrate that both SpeC and streptococcal M protein, acting cooperatively, are required for disease. Vaccination with a conserved M protein peptide, J8, protects against STSS by causing a dramatic reduction in bacterial burden associated with the absence of SpeC and inflammatory cytokines in the blood. Furthermore, passive immunotherapy with antibodies to J8 quickly resolves established disease by clearing the infection and ablating the inflammatory activity of the M protein, which is further enhanced by addition of SpeC antibodies. Analysis of 77 recent isolates of Streptococcus pyogenes causing ISD, demonstrated that anti-J8 antibodies theoretically recognize at least 73, providing strong support for using antibodies to J8, with or without antibodies to SpeC, as a therapeutic approach.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Transporte/imunologia , Exotoxinas/imunologia , Antígenos HLA/imunologia , Choque Séptico/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Superantígenos/imunologia , Animais , Antígenos HLA/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Choque Séptico/genética , Infecções Estreptocócicas/genética
15.
Infect Immun ; 87(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30323025

RESUMO

Naturally acquired immunity to malaria is robust and protective against all strains of the same species of Plasmodium This develops as a result of repeated natural infection, taking several years to develop. Evidence suggests that apoptosis of immune lymphocytes due to uncontrolled parasite growth contributes to the slow acquisition of immunity. To hasten and augment the development of natural immunity, we studied controlled infection immunization (CII) using low-dose exposure to different parasite species (Plasmodium chabaudi, P. yoelii, or P. falciparum) in two rodent systems (BALB/c and C57BL/6 mice) and in human volunteers, with drug therapy commencing at the time of initiation of infection. CIIs with infected erythrocytes and in conjunction with doxycycline or azithromycin, which are delayed death drugs targeting the parasite's apicoplast, allowed extended exposure to parasites at low levels. In turn, this induced strong protection against homologous challenge in all immunized mice. We show that P. chabaudi/P. yoelii infection initiated at the commencement of doxycycline therapy leads to cellular or antibody-mediated protective immune responses in mice, with a broad Th1 cytokine response providing the best correlate of protection against homologous and heterologous species of PlasmodiumP. falciparum CII with doxycycline was additionally tested in a pilot clinical study (n = 4) and was found to be well tolerated and immunogenic, with immunological studies primarily detecting increased cell-associated immune responses. Furthermore, we report that a single dose of the longer-acting drug, azithromycin, given to mice (n = 5) as a single subcutaneous treatment at the initiation of infection controlled P. yoelii infection and protected all mice against subsequent challenge.


Assuntos
Antimaláricos/administração & dosagem , Malária/tratamento farmacológico , Malária/imunologia , Plasmodium chabaudi/imunologia , Plasmodium falciparum/imunologia , Plasmodium yoelii/imunologia , Vacinação/métodos , Imunidade Adaptativa , Animais , Azitromicina/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Doxiciclina/administração & dosagem , Feminino , Humanos , Malária/prevenção & controle , Malária Falciparum , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasmodium chabaudi/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium yoelii/crescimento & desenvolvimento , Células Th1/imunologia , Adulto Jovem
16.
Hum Vaccin Immunother ; 14(8): 2034-2052, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29873591

RESUMO

A successful vaccine needs to target multiple strains of an organism. Streptococcus pyogenes is an organism that utilizes antigenic strain variation as a successful defence mechanism to circumvent the host immune response. Despite numerous efforts, there is currently no vaccine available for this organism. Here we review and discuss the significant obstacles to vaccine development, with a focus on how cryptic epitopes may provide a strategy to circumvent the obstacles of antigenic variation.


Assuntos
Desenho de Fármacos , Epitopos/imunologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Animais , Variação Antigênica/genética , Variação Antigênica/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Modelos Animais de Doenças , Mapeamento de Epitopos , Epitopos/genética , Humanos , Mutação , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Vacinas Estreptocócicas/genética , Streptococcus pyogenes/genética
17.
NPJ Vaccines ; 3: 15, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736269

RESUMO

Antigenic diversity of the M protein is a major constraint to the development of immunity to group A streptococcus (GAS). We demonstrate that a conserved cryptic epitope that is unrecognized by the host immune system following infection can protect mice following vaccination, and that immunity is strengthened and broadened following successive infections. The observation that infection can boost and broaden, but cannot prime immunity to a cryptic epitope, may be exploited for vaccines for other pathogens.

18.
PLoS Pathog ; 12(12): e1006122, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28027314

RESUMO

The immunobiology underlying the slow acquisition of skin immunity to group A streptococci (GAS), is not understood, but attributed to specific virulence factors impeding innate immunity and significant antigenic diversity of the type-specific M-protein, hindering acquired immunity. We used a number of epidemiologically distinct GAS strains to model the development of acquired immunity. We show that infection leads to antibody responses to the serotype-specific determinants on the M-protein and profound protective immunity; however, memory B cells do not develop and immunity is rapidly lost. Furthermore, antibodies do not develop to a conserved M-protein epitope that is able to induce immunity following vaccination. However, if re-infected with the same strain within three weeks, enduring immunity and memory B-cells (MBCs) to type-specific epitopes do develop. Such MBCs can adoptively transfer protection to naïve recipients. Thus, highly protective M-protein-specific MBCs may never develop following a single episode of pyoderma, contributing to the slow acquisition of immunity and to streptococcal endemicity in at-risk populations.


Assuntos
Memória Imunológica/imunologia , Pioderma/imunologia , Pioderma/microbiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Animais , Ensaio de Imunoadsorção Enzimática , Camundongos , Streptococcus pyogenes
19.
Sci Rep ; 6: 39274, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27976706

RESUMO

The upper respiratory tract (URT) is the major entry site for human pathogens and strategies to activate this network could lead to new vaccines capable of preventing infection with many pathogens. Group A streptococcus (GAS) infections, causing rheumatic fever, rheumatic heart disease, and invasive disease, are responsible for substantial morbidity and mortality. We describe an innovative vaccine strategy to induce mucosal antibodies of significant magnitude against peptide antigens of GAS using a novel biocompatible liposomal platform technology. The approach is to encapsulate free diphtheria toxoid (DT), a standard vaccine antigen, within liposomes as a source of helper T-cell stimulation while lipidated peptide targets for B-cells are separately displayed on the liposome surface. As DT is not physically conjugated to the peptide, it is possible to develop modular epitopic constructs that simultaneously activate IgA-producing B-cells of different and complementary specificity and function that together neutralize distinct virulence factors. An inflammatory cellular immune response is also induced. The immune response provides profound protection against streptococcal infection in the URT. The study describes a new vaccine platform for humoral and cellular immunity applicable to the development of vaccines against multiple mucosal pathogens.


Assuntos
Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes , Administração Intranasal , Animais , Anticorpos Antibacterianos , Antígenos de Bactérias/imunologia , Proliferação de Células , Epitopos/química , Sistema Imunitário , Inflamação , Lipossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mucosa/imunologia , Peptídeos/química , Baço/citologia , Infecções Estreptocócicas/imunologia , Fatores de Virulência/imunologia
20.
Eur J Pharmacol ; 789: 1-7, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27373851

RESUMO

ß-adrenoceptor antagonists are commonly used in ischaemic heart disease (IHD) patients, yet may impair signalling and efficacy of 'cardioprotective' interventions. We assessed effects of chronic ß1-adrenoceptor antagonism on myocardial resistance to ischaemia-reperfusion (IR) injury and the ability of cardioprotective interventions [classic ischaemic preconditioning (IPC); novel sustained ligand-activated preconditioning (SLP)] to reduce IR injury in murine hearts. Young male C57Bl/6 mice were untreated or received atenolol (0.5g/l in drinking water) for 4 weeks. Subsequently, two cardioprotective stimuli were evaluated: morphine pellets implanted (to induce SLP, controls received placebo) 5 days prior to Langendorff heart perfusion, and IPC in perfused hearts (3×1.5min ischaemia/2min reperfusion). Atenolol significantly reduced in vivo heart rate. Untreated control hearts exhibited substantial left ventricular dysfunction (~50% pressure development recovery, ~20mmHg diastolic pressure rise) with significant release of lactate dehydrogenase (LDH, tissue injury indicator) after 25min ischaemia/45min reperfusion. Contractile dysfunction and elevated LDH were reduced >50% with IPC and SLP. While atenolol treatment did not modify baseline contractile function, post-ischaemic function was significantly depressed compared to untreated hearts. Atenolol pre-treatment abolished beneficial effects of IPC, whereas SLP protection was preserved. These data indicate that chronic ß1-adrenoceptor blockade can exert negative effects on functional IR tolerance and negate conventional IPC (implicating ß1-adrenoceptors in IR injury and IPC signalling). However, novel morphine-induced SLP is resistant to inhibition by ß1-adrenoceptor antagonism.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/terapia , Miocárdio/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Animais , Relação Dose-Resposta a Droga , Frequência Cardíaca/efeitos dos fármacos , Isoproterenol/farmacologia , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...